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ABSTRACT OF THE THESIS

Adaptive Data Dissemination and Content-Driven Routingéer-to-Peer Systems

by

Thomas S. Repantis

Master of Science, Graduate Program in Computer Science
University of California, Riverside, August 2005
Dr. Vana Kalogeraki, Chairperson

Peer-to-Peer systems have emerged as a cost-effective wfedraring data and services
and are offering fault-tolerance and self-adaptation igdescale environments. However,
the efficient location of data objects or services in a fulgcentralized, self-organizing,
unstructured overlay network remains a challenging prabl®lost of the current solutions
rely on maintaining global knowledge or generate large amtwaf traffic and as a result do
not scale well.

In this work we propose adaptive data dissemination andeotiriven routing algo-
rithms for intelligently routing search queries in largee, unstructured systems. In our
mechanism nodes build and maintain content synopses ofoihjeicts and adaptively propa-
gate them to the most appropriate peers. Based on the cegtegises, a routing mechanism

is being built to forward the queries to those nodes that laakiegh probability of provid-



ing the desired results. Through extensive simulationistudf networks of thousands of
nodes and for different content synopses propagatioregiest, we show that our approach
is highly scalable and significantly improves resourcegedsy saving both bandwidth and

processing power.
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Chapter 1

Introduction

The explosive growth of rich-media online content, suchudi@ video, news articles, im-
ages, and documents has created new challenges for reatdillaboration among multiple
users in large-scale distributed environments. At the sdame advances in the networking,
processing and storage capabilities of personal comphtes signaled the emergence of
peer-to-peer (P2P) systems as a platform for providing aoeiving data and services. Ac-
cording to the peer-to-peer paradigm, nodes act autondynimu®rm large-scale distributed
systems that enable the sharing of their resources. The foer an overlay, as is shown in
Figure[11, a logical network over the physical network, antlas both clients and servers.
They employ their own location and routing mechanisms anidtaia soft state information
about other nodes. The peers can be geographically ditdpbeterogeneous in their re-
source capabilities, and dynamic in their participationhia system. Peer-to-peer systems

have been used with great success for storing and shariad1dgt27| 10] as well as for per-



Ovyerlay

Figure 1.1: The peers form an overlay on top of the physictlomk.

forming distributed computations [40,]16,/ 12]. Some of tlagiractive features include cost
effectiveness (by aggregating existing resources), asgeé autonomy (by self-organizing),
improved scalability (due to the absence of a central coatdr’s bottleneck), and reliability
(due to lack of a single point of failure).

Two main approaches have emerged for constructing peged¢onetworksstructured
and unstructuredoverlays. Structuredoverlay networks are organized in such a way that
objects are located at specific nodes in the network and nodagain some state informa-
tion, to enable efficient retrieval of the objects. On theeothand, inunstructuredoverlay
networks, objects can be located at random nodes, and noglebla to join the system at
random times and leave it without a priori notification. Hepanstructured overlays are bet-
ter in coping with churn][35] —the continuous process of nadwal and departure— and the
heterogeneity of the peers. Furthermore, unstructuredayshave been deployed and are

actively been used by millions of Internet users.



However, in an unstructured topology several design isaties, one of the most chal-
lenging ones being the efficient search and retrieval of damerviceﬂ. The major issue is
that no central manager can have an accurate global vieve gfyfstem’s contents. The prob-
lem is complicated further by the fact that the environmerdynamic and heterogeneous.
Peers join, leave, and fail without a priori notification drmal/e very different and restricted
processor, storage and communication capabilities. llgjmala large-scale peer-to-peer net-
work, the amount of traffic generated by queries can be ovelming.

Traditionally, search in unstructured peer-to-peer netwas performed based on key-
word queries by flooding the network with messages and padpagthe search query hop-
by-hop until the desired answer is found. The problem with #pproach is that it fails to
take into account the probability of a node to be able to plewhe asked object. Hence,
the search messages travel a large number of hops, wasbiogssing power of many nodes,
and producing large amounts of network traffic, while thensrgo the query is delayed.

Recently proposed techniquési[46] use the keywords of theegito compute the simi-
larity of the query message to previously seen queries,abafnilistically forward the query
to only a subset of the nodes. These rely on knowledge cetlelcically at the peer by
monitoring the messages propagated in the network.

Content summarization [28] is another technique that has Ipeoposed to tackle the
aforementioned problem. It is recently receiving a lot déation as a means to reduce

latency, balance the query load and alleviate hot spots.edlodnstruct summaries of the

IWe will be using the term “object” to refer to both data and/gess.



objects in their local stores and propagate them to theirspeBy having access to these
summaries, a node can perform a local search to determirehwbdes have the requested
object and thus can efficiently decide where to propagateeygio maximize the probability
for a fast reply.

However, when using the content summaries, it is importanbtelligently decide to
which nodes and how often to propagate them to the networiceSiontent summaries are
passed around in messages, they introduce some perforroasiceStoring the summaries
of the contents of all the peers in the network in one node ossible due to bandwidth
and storage limitations and also because of the dynamio/ltad the peers. In such large-
scale systems, changes to the stored data happen morehaftethhéy can be communicated
to a single peer. Thus, the overlay network can greatly befiefn intelligent decisions
regarding when and where content summaries are propagated.

In this work [33] we target the problem of data disseminatiomunstructured, decen-
tralized peer-to-peer networks. We propose adaptive dasemlination and content-driven
routing protocols to reach the requested objects, whilpikgethe number of propagated
messages small. In our mechanisms nodes build and mairatert summaries of their
local data and adaptively disseminate them to their mostogpiate peers. Peers use the
Bloom filterdata structure_|3] to build a synopsis of their local contddlbom filters allow
us to answer cardinality queries with a certain probabilNpdes disseminate their content
synopses to other peers, so that they can use them to efficrente queries for objects.

We investigate and compare three different techniquesdaptively selecting the most ap-



propriate recipients of a peer’s content synopsis, takiihg account the number and type of
gueries sent by other peers in the past. The goal of the adagdcision is to selectively
propagate the synopsis to those nodes that need them thdandiseir routing decisions,
while keeping the number of transferred synopses low. Ope®mental results validate the

performance benefits of our approach.

1.1 Contributions

Our major contributions are:

1. We propose aontent-driven routing mechanismfor finding objects in large-scale,
unstructured peer-to-peer networks. Our mechanism petpaghe queries to those
peers that have a high probability of providing the desieiits. The mechanism is

driven by content synopses that are stored locally at thespee

2. We proposedaptive data dissemination algorithmsthat decide to which peers to
propagate the content synopses to improve the search armvaebf the objects and
make more efficient use of the bandwidth and processing p@seurces. The novelty
of our approach is that content summaries are propagatedhdgally to selected peers

based on the requests and replies generated by those peers.

3. We present an extensive experimental study of largee sidvorks, that illustrates that

our mechanism reduces the number of messages sent, the moinleers contacted



and achieves high recall efficiency, in comparison to othagutar searching tech-
niques, even in the presence of disconnecting nodes. Wearernipe performance of
our mechanism under different content-based propagatiategies and discuss their

results.

The rest of the thesis is organized as follows: In chagter Dmesent the architecture
of our adaptive data dissemination and content-driverimguhechanism in detail. In chap-
ter[3 we describe the experimental evaluation of our apjraac discuss our results. We
review related work in query routing and data disseminatiaverlay networks in chaptgl 4.

Finally, we draw conclusions and explore avenues to futuekwn chaptefb.



Chapter 2

System Architecture

In this chapter we present our system architecture in degelction 2]l presents our net-
work model, while Sectioh 2.2 gives an overview of our sysseoperation. Sectioh 2.3
describes the content synopsis data structure our systesnarsd Section 4.4 describes the
content-driven routing mechanism. Section 2.5 preseetsdhtent synopses dissemination
strategies, followed by Sectidn_R2.6, which describes tharmaters taken into account in
the adaptive synopses dissemination. Finally, Se€fidadi@cusses implications of dynamic

behavior in the synopses dissemination.

2.1 Overlay Model

We consider an overlay network df nodes (peers) that store objects. The overlay is con-
structed on top of the physical network and the peers areditikrough virtual connections.
Each peer has a globally unique identifier (e.g. port:IP)raathtains connections with other

7



peers. The network is unstructured, decentralized anebsgdinizing, meaning that peers
make their own decisions on which peers to connect to or toydoe objects. The number
of connections of a peer can vary and is typically restritigthe resource capabilities of the
peer. The peers of a node can be randomly selected, definedidpsed on some optimiza-
tion criteria (such as round-trip delays), or dynamicabyablished and revised in response
to the node interactions or changes in the processing amebrieng conditions([1i7]. Our
mechanisms aim to facilitate searching in any type of uctiined peer-to-peer network.
Peers that are not directly connected communicate throelging. In other words, peers
not only exchange messages with their neighbors, but alge messages coming from other
peers.

Each object stored in a peer is uniquely identified by the me&mtrinsic references [14]
which are generated when the object is first inserted in te&esy. Intrinsic references are
based on the hash digest of the object’s actual contentsrrétan its name or location and
therefore allow us to create persistent, state-indepénded immutable storage. Alterna-
tively, each object can be associated with a set of keywardsdlow meta-data types of
searching. The mechanisms presented in this paper aregyortabto the type of search and

therefore we just focus on searching by an object’s inttinsierence.



2.2 System Operation

Each peer uses tligdoom filterdata structure 3] to build a synopsis of the content in itslo
store. Bloom filters are compact data structures that reptesset of objects stored at each
peer by using an array of bits; each bit takes a binary one erawalue. The cardinality of
an object is checked by comparing the bit array generatedblihg the object by multiple
hash functions, to the bit array of the Bloom Filter datactite. This allows us to answer
with a certain probability whether the object is in the grarmot. Each peer stores two
types of filters, docal filter for the objects available locally at the node aadhote filterdor
objects stored in remote peers. The node sends its localtfiltemote peers. The recipients
of the filter are selected adaptively, by taking into accatetnumber and type of queries
sent by the peers. The synopses are used to efficiently raetéeg for objects. The goal of
the adaptive decision is to selectively propagate the ssisdp those nodes that need them
the most for their routing decisions, while keeping the nenddf transferred synopses low.
Peers search for objects by sending query messages totime@diate neighbors. Those
gueries are evaluated locally in each peer and in case magtcijects exist, results are
returned to the searching peer. Otherwise, the query igdotat those of its peers whose

synopses present a closest match. Fiuie 2.1 illustrates/stem’s operation.
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Figure 2.1: System operation example. Each node maintdmtsibcontent synopsis, as well
as content synopses of remote peers. Using the synopses@@els able to route queries
more efficiently. In this example, peer C propagated its @onsynopsis CS to peer B. B
based on CS was able to route peer A's query Q only to C, ancethdt IQH is routed back
to A.

2.3 Content Synopses

In this Section we describe the data structure we use to su@ereach peer’s content. As-
sume that peep has a group of. objects given by the set, = a4, ao, ..., a,. The Bloom
filter that represents the s8j is described by a bit arrag F}, of lengthm, all initially set to

0. We assumé hash functions}, ho, ..., hy, With h; : X — 1...m. Each hash function maps
each element of the sétto a value between...m in a totally random fashion. For each
elements € S, the bits at positioth; (s), ho(s), ..., hx(s) are set to 1. Note though, that, a bit
may be set to 1 multiple times. To determine whether a ceel@mentz is in S, we check
whether all the bits given bl (), ha(z), ..., hi(x) are set to 1. If any of them is 0, then we
are certain that the elemenis not in the sef. If all ~y(x), hao(x), ..., hy(z) are setto 1, we

conclude that is in .S, although there is a certain probability that we are wrongsTs the

10



case that a Bloom filter may yieldfalse positive After insertingn elements into a Bloom
filter of sizem usingk hash functions and letting, be the probability that a specific bit is
still 0, the probability of a false positive (the probability th#it /abits have been previously
set) is shown[[3[-15] to bepe,, = (1 — po)* = {1 — {1 — i}kn}k ~ {1 — e#’“”}k. As
this equation shows, there exists a trade-off between k, anmehthe accuracy of the objects’
representation using Bloom filters. This trade-off is inigeted experimentally in-3.4.1.

Our system exploits the probability that a small number Isie@ositives does not greatly
affect the performance of our searching mechanism. Thisnfedes the Bloom filter ap-
proach highly suitable for locating objects accurately fasd.

To support the removal of members from the sets represegtteBloom filters we use
counting Bloom filters. In this approach, a counter is addezbich bit in the filter, so that the
number of objects that are hashed in the same position igeduAn example of a counting
Bloom filter is shown in FigurE212 (i).

Each peer may store content synopses for several peersatedne it, indexed by their
IDs. Moreover, each of those content synopses, may contdinnly the Bloom filter of
the peer’s local contentdcal filter), but also Bloom filters of the content of remote peers
connected to itremote filter$. Hence, to store multiple content synopses, we use nayét
Bloom filters. Figurd—212 (ii) shows an example of a multideBloom filter. Notice that
the Bloom filter of each level is not merged but appended tbdhthe previous level. That

approach consumes more memory space to store the Bloom,fiitgrallows us to estimate

the location of a larger number of objects more accurately.
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Figure 2.2: (i) Counting Bloom filter example. The counteegps track of the number of
objects that are hashed in the same position. (ii) Multel&loom filter example. The filter
of each level is appended to that of the previous level.

2.4 Content-Driven Routing

In our content-driven query routing mechanism each peeestbe content synopses of other
peers, and utilizes that information in order to route geeemore efficiently. In particular,
when a peer receives a query, apart from searching its loo#tnt, it also searches the stored
content synopses of other peers. If there is no match ingtd mntent, the peer forwards the
guery only to its immediate peers whose synopses statehtéyaor their neighbors contain
the requested object. The pseudocode of the algorithm f&xkihg the content synopsis of
a peer is presented in Figurel2.3. Only if the object is nohbim any content synopsis, is
the query forwarded to a set of random neighbors.

If the query cannot be satisfied locally, the node must deidehich of the peers to
propagate it next. Thus, it searches the contents of thedst®ynopses of remote peers

and the query is propagated only to the peers whose synapdieate that they contain the
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publ i ¢ bool ean checkAl | Renot eSynopses(Node conn_node, Docunent doc) {

Cont ent Synopsi s renot eConSyn =
( Cont ent Synopsi s) cont ent _synopsi s. renot eBFs. get (conn_node) ;

if (renoteConSyn. | ocal BF.isMenber(docl D) == true) {
/1 Local Bloomfilter positive
i f (conn_node. hasCont ent (doc) == false) {
/1 Local Bloomfilter fal se positive }
return true; }

for (Enumeration e = renpteConSyn. renot eBFs. keys();
e. hasMoreEl enents(); ) {
Node node = (Node)e. next El enent () ;
Cont ent Synopsi s ConSyn =
( Cont ent Synopsi s) r enot eConSyn. o_r enot eBFs. get ( node) ;
i f (ConSyn.local BF.i sMenber (docl D) == true) {
/'l Renote Bloomfilter positive
i f (node. hasContent (doc) == fal se) {
/1 Renote Bloomfilter fal se positive }
return true; } }

/1l Else, we have no positives at all: neither local, nor renote.
return fal se; }

Figure 2.3: The algorithm for choosing peers to forward argué&or each peer that its
content synopsis has been stored, its local and remote Bitiers are checked for matches.

requested object. These are the peers with the highestlplibpaf actually containing the
object. If the object is not found in any synopsis, the nodevéods the query to a random
subset of the immediate peers. To provide a terminationiiondso that messages are not
propagated indefinitely in the network when no objects anadp each message is associated
with a timeto_live (TTL) field that represents the maximum number of times tnessage
can be propagated in the network. The TTL value is decreasdttane the message reaches
a peer. A node that receives a message with TTL zero, stopaifding the message. Also,

if a node receives the same message from two different pedrscards the duplicate.

13
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Figure 2.4: An example of the content synopses dissemimatrategies IL, AL, and ALR.
According to IL, node C propagates only its local synopsialtits immediate peers (peers
one hop away). In AL, C propagates its local synopsis to safetnmediate and remote
peers. With the latter a direct connection may need to beexteén ALR, C propagates both
its local and stored remote synopses to selected immedidteeaote peers.

During the system operation, the node keeps statisticstabeuwjueries and the replies
generated or propagated through the peer. In particulleeeps track of (1) the number of
gueries sent by the peer and the replies (query hits) retéivie,s queries from other peers,
(2) the number of queries received at the peer and the replgenerates to other peers.

These are used to decide to which peers to disseminate asgrdphe local content of the

peer.

2.5 Content Synopses Dissemination Strategies

Since the bandwidth used for transferring content synoigdesited, as well as the space in
nodes to store them, each peer selects only some of the @bes {o propagate its content
synopsis. We have implemented and compared three diffsti@tégies for content synopses

propagation.
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2.5.1 Propagate local content synopsis to immediate peerdsnfnediate

Local —IL)

According to this strategy each peer sends its local costarapsis to all its immediate peers
and routes queries by taking into account only the contembgses of its immediate peers.
This strategy is simple, but of limited use: Since only a $mamber of content synopses is
examined for the routing decision to be taken, a lot of theigeeannot be directed using the
content synopses. The protocol then resorts to randomlygsthg peers to further forward

the query and thus generates a lot of traffic.

2.5.2 Propagate local content synopsis to peers selecteagatively (Adap-

tive Local — AL)

Using this more elaborate strategy, each peer sends itlsdoetent synopsis to a selection
of peers, according to several parameters. Again the igidone following the synopses
of the local content of other peers. The recipients of thetartnsynopsis of a peer are
selected not only among its immediate neighbors, but alssmgmemote peers. The adaptive
selection of the synopses recipients aims to make the dosyaopses available to the peers
that have a high probability of using them again in the futamel yet keep the number of
synopses transfers limited. The parameters used to dexidbith peers to propagate the
content synopses are described in Sedfioh 2.6. As the nushbgnopses used in routing is

again limited, this strategy is also often obliged to resmrandomly forwarding queries.
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2.5.3 Propagate both local and remote content synopses toare se-
lected adaptively (Adaptive Local Remote — ALR)

This multi-level strategy differs from the previous, in thihe peers propagate and use for
their routing decisions not only the synopses of the localteat of their immediate peers
or peers they have interacted with, but also synopses ofahieiot of remote peers. More
specifically when a peer propagates its local content sysapther peers, it also prop-
agates the content synopses of remote peers it has storbdr fi#ters store those remote
content synopses together with the local synopsis of thett @ed use them to route queries
to it. Since each peer stores and propagates remote copteses of peers it is connected
to, it can then easily route queries for content stored imth@bviously this strategy enables
the peers to examine a lot of content synopses before roatipgery. Therefore a lot of
the queries can be routed accurately and randomly forwgrgireries is not used that of-
ten. The processing time spent in examining the contentpsawis still little. The amount
of information transferred between the nodes in order tpagate the remote and the lo-
cal synopses is higher than in the previous strategies,titlutestricted through the use of
adaptive selection of the synopses recipients. As alreaghtioned, the parameters used to
decide to which peers to propagate the content synopsegstalnkd in Section 2.6.
Figure[Z4 presents an example of the different contentpse®propagation strategies
discussed above. A point that needs to be made is that cagyeapses do not necessarily

have to be propagated as individual messages, but can kethpggybacked on the current
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usage messages (e.g. queries and replies). As alreadyomesthtall of the above strategies
are assuming a simple network infrastructure, where peerte rqueries through their im-
mediate neighbors. In AL and ALR a more advanced overlay ot built, where peers
open or can potentially open direct connections to peetgtioaide them with good results
(“share similar interests with them”) and routing can algoblased on content synopses of
peers outside a node’s current horizon. In that case, whegeest locality among the peers
is exploited, queries can be routed even faster and moreatety at the cost of manag-
ing many —probably short-lived— connections and of stqrprgcessing and propagating a
large number of content synopses between many differems pédowing “transient” con-
tent synopses to traverse the network would be the physicdirwation of this approach.
Yet, even though the cost of propagating a synopsis may ntwdo&igh, in a large-scale
system the cost of maintaining up-to-date information tigfmut the path that a transient
content synopsis travels, about where it came from and dmwito reach its source would
be prohibitive. This would be even more the case for dynamiirenments, with frequent
topology changes or content updates.

The frequency with which a peer propagates its content siaaepends on the number
of queries it receives. The number of content synopsis ngesgaropagated depends on the

thresholds of the several parameters discussed in Sécflon 2
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peer_id; The peer’s globally unique identifier.

connected_peers; The list of peers currently connected to this peer.

object_list; The list of objects stored locally at the peer.

queries_received; The total number of queries this peer has processed.

searh_msgs_received; The number of search messages this peer has received, dniolexee I1Ds of the query originators|.
local_hits; The number of local hits generated by queries, indexed bibtk@f the query originators.
sent_contentSynopsis_to; | The list of peers that have received a current version ofdbal lcontent synopsis.

Table 2.1: Parameters of each pearthe system.

2.6 Adaptive Synopses Dissemination Parameters

Each node in the system is associated with a list of charatits; which are summarized in
Table[21.

In order to decide more accurately which peers would berrefih bbtaining the content
synopses, adapt the selection decision to the currenssiaithe network and thus propagate
the content synopses more efficiently, each peer takeséotuat several parameters. These

are used by the AL and ALR propagation strategies.

e The number of querieg; a node has received by a peer, and their frequency. Peers
that have sent a lot of queries to us will most probably malkedgese of our content
synopsis in their routing decisions. A lot of forwarded desindicate peers that route
a lot of traffic. They can use our content synopsis to avoidlsgnus queries for

content we do not have.

e The number of replies; a node has provided a peer with, and their frequency. This
parameter identifies the popularity of our stored objectsragspecific peers. Peers
that generated a lot of local hits and got a lot of replies byoukeir requests will also

most probably need our content synopsis in their routingst@ts.
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e The number of connectionsnn; other peers maintain. This parameter identifies the
connectivity degree of a peer and is a factor in estimatiegatferage number of mes-
sages per time unit this peer may route. A peer that playsdleeaf a hub in the

network, routing many queries, will most probably need thetent synopses more.

2.7 Implications of Dynamic Behavior

Since the network is dynamic and self-organizing, nodes laaye or join independently.

This especially applies to mobile environments. The systamt be able to propagate con-
tent synopses to reflect such changes in the connectionsedviar content synopses must
be updated whenever an object is added, deleted, or changedade’s content. Hence,

updated content synopses must be generated in two cases:

e When a peer detects an update at the local repository (daritanges) of objects (new
objects are obtained, existing objects are deleted or nesvores of existing objects

are created).

e When a peer detects an incoming or withdrawn peer conne@@mmection establish-

ment or drop).

2.7.1 Content Changes

When the content is updated, a new content synopsis is disatd by the peer. To min-
imize the traffic in the network our approach (1) does not gaeean update unless the
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contents of the peers have changed and (2) groups individloaim filter updates into group
updates to propagate them to the peers. Content synopsdissgminated due to both local

and remote content changes.

2.7.2 Connection establishment

According to the content synopses propagation strategygfellowed, a newcomer may
receive content synopses from its neighbors immediatelgdaptively during operation.
The same applies to the newcomer’s decision to propagaiw/itsontent synopsis.

Thus, following a push model, a peer would choose to pusloitgent synopsis to other
peers as soon as it is connected. This will result in the gibers replying with their content
synopses. Since peers keep track of where they have sentoméent synopsis, duplicates
in synopses propagation are avoided. This is the defaulhadedf synopses propagation.
Yet we also discuss a more passive method in the next patagraipable for peers with very
short connection times.

Following a pull model, a peer would choose to ask for the eohsynopses of other
peers only when it needs to search for something or route gy.qUéiis approach would
result in extraneous traffic for explicitly asking for thentent synopses, but it might prove
useful in highly dynamic environments. In the case of fastimgmobile users for example,
it might make more sense to allow them to explicitly pull sgees they will need, instead of

bombarding them with synopses of different neighborhoadti@y move around.
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2.7.3 Connection drop

When a peer permanently disconnects from the network, ereitte content synopses of
other peers stored in it, nor its content synopsis storethiargeers will be useful anymore.
Its immediate peers will sense the disconnected peer anblealelevant content synopses
will be removed after a time threshold In addition, aDIl SCONNECTED message will be

sent to the non-immediate peers to remove their correspgradintent synopses.
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Chapter 3

Experimental Evaluation

In this chapter we present a detailed experimental evaluaftiour mechanisms. Sectibnl3.1
describes our simulation environment, while Secfion 3/@marizes the characteristics of
the different query routing protocols we compared. SedBahpresents the performance
metrics we used, Sectidn 8.4 discusses our results, anty fBettion[3.5 summarizes the

benefits of our technique.

3.1 Simulation Infrastructure

To investigate the characteristics of our adaptive cordenen routing mechanism in de-
tail we have implemented an unstructured peer-to-peerarktusing the Gnutelle [18] P2P
communication protocol. In order to be able to evaluateesystof thousands of peers, we
have used the Neurogrid simulatdr[20]. Our implementatibtihe adaptive content-driven

routing protocol was done in approximately 3500 lines ofaJemde. The parameters used

22



Node Parameters Number of nodes Varying
Network Parameters TimeToLive of query messages 7
Initial number of connections per node 3
Minimum number of connections per node 3
Maximum number of connections per node10
Network topology Random
Content Parameters Size of pool of available objects 2000
Number of objects per node 30
Distribution of objects over nodes Uniform
Bloom Filter Parameterg| Size of filter, in bits 10
Number of hash functions 4
Size of counter for each position, in bits | 4
Simulation Parameter Number of averaged measurements 20
Number of searches per experiment 400

Table 3.1: Simulation settings.

in the simulation are presented in Tablel 3.1. We chose theonketsize to vary up to 3000
nodes, an estimate of the number of concurrently activesioda university campus.

In our implementation we used counting, multi-level Bloofitefs. To create the hash
functions, used in generating the Bloom filters, similady]43], we took advantage of a
cryptographic message digest algorithm (SHA-1 [30]) anitisgfroperty of pseudo random-
ness. More specifically, we used SHA-1 to hash strings otraryilength, representing the

peers’ content, to 160 bits. We then built the hash functlmndividing the SHA-1 output

into smaller sets of bits.

Our average results are derived from 20 measurements ah@dpaof those is averaged
from 20 searches. In other words, each experiment run iesld@0 searches in total. The
peers’ content is chosen from 2000 sample objects, of whithate randomly selected to be

search targets. To demonstrate locality of interestsgmdifft peers in the same vicinity may

guery for the same sets of objects.
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3.2 Overview of Protocols

We ran simulations to compare the different strategies ulkatcontent synopses to route
guery messages. Those strategies were described in SE@iand are briefly summarized
in Table[3.2. We also compared our strategies to a traditBreadth-First Search (BFS)
algorithm. Even though BFS is not directly comparable toaantent-driven routing proto-
cols, we chose to present it here to illustrate the diffeesrend the relative gain from our

adaptive propagation schemes.

Protocol | Query Routing Synopses Propagated Synopses Recipients

IL Content-driven routing Local content synopses All immediate peers

AL Adaptive content-driven routing Local content synopses Selected immediate and remote peers
ALR Adaptive content-driven routing Local and remote content synopsesSelected immediate and remote pegrs
BFS Flooding all immediate peers | — -

Table 3.2: The query-routing protocols we compare in theegrgents.

3.3 Performance Metrics

We introduced a number of metrics to evaluate both the atibn of the system’s resources,
and the efficiency of the query routing algorithms. Moreawverinclude metrics specifically
for the comparison of the content-driven protocols and tleeigacy of the Bloom filters.

Hence, the metrics we used to compare the searching algsritrere:

1. Average Message Transfers. The average number of query messages sent during a

search. This metric indicates how efficiently the networkdwidth is used.

2. Average Nodes Reached. The average number of nodes reached during a search.
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This metric shows how many nodes are contacted to providdtse® a query and is
therefore an indication of the efficiency of the search atgorin terms of bandwidth

and processing power usage.

3. Average Recall Efficiency. Recall is defined as the proportion of all possible matches
to a search that were actually discovered. Recall efficiendefined as the ratio of
recall against the number of query messages that haveladvtblrough the network
during that search. Therefore the recall efficiency averaga indication of the use-

fulness of the query messages that are propagated.

The metric we used to measure the accuracy of the Bloom filtass

1. False Positives. This is the number of incorrect reports by Bloom filters; isiathat

an object is stored in a peer, when it actually isn't.

Finally, the metrics specifically pertaining to the contdnten protocols were:

1. Synopses Hits/Misses Ratio. This is the ratio of the content synopses hits against
the content synopses misses. It shows how many of the quenig¢d be routed based
on the Bloom filters and is therefore an indication of the ubefss of the content

synopses.

2. Filter False Positives/Total Positives Ratio.This is the ratio of the Bloom filter false
positives against the total number of Bloom filter positivésindicates how many
of the queries were falsely routed based on the Bloom filtarst the total number of
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gueries that were routed based on them. Therefore it mesh@accuracy of content-

driven routing.

3. Total Content Synopses MessagesThis is the total number of messages sent for con-
tent synopses propagation. It measures the content-drowgimg protocol overhead

(cost).

4. Total Query Messages. This is the total number of query messages propagated. It

measures the efficiency of the network bandwidth usage.

3.4 Analysis

In this Section we present a detailed discussion of the e@xpeatal results. -3 41 we
investigate the optimal values for the Bloom filter parameterhile in[3.4.P we compare our
adaptive content-driven routing to flooding-based sedrcZ. 4.3 we compare the different
content synopses dissemination strategies to each otheora detail. Finally, ini-3.414 we

investigate the accuracy of adaptive content-driven nguita highly dynamic environments.

3.4.1 Bloom Filter Parameters

As already shown in Sectidn 2.3, there exists a tradeoff enrtpresentation of objects
through Bloom filters. Three different parameters may affee accuracy of the represen-
tation, in other words the number of false positives yield€lde size of the Bloom filter in

bits (memory overhead), the number of hash functions usedgatation overhead), and the
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Figure 3.1: Bloom filter false positives for Figure 3.2: Bloom filter false positives for
varying size of the filter (in bits). varying number of hash functions.

number of objects to be represented. We investigated thmalptalues for those param-
eters in our first set of experiments, by varying each one @ftlvhile keeping the others
constant. We used counting Bloom filters with 4-bit counténs simplest content-driven
routing algorithm (IL), 4000 possible objects, and 1000ewdnd focused on the number of
false positives.

Effect of filter size to the number of false positives.As Figurd 3.1l shows, filter size can
greatly affect the number of false positives. Small filteesican result to thousands of false
positives. However false positives are virtually elimetabove 10 bits (when representing
30 objects per filter and using 4 hash functions).

Effect of number of hash functions to the number of false posives. As Figure[3.P
shows, the number of false positives greatly decreases wiag 4 hash functions or more

(when representing 30 objects per filter and using 10 bitgi@filter size).
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Figure 3.3: Bloom filter false positives for
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node.

Effect of number of represented objects to the number of fals positives. Figure[3.B
shows that when using 4 hash functions and Bloom filters ofitl0siize, not more than 30
objects can be represented by a filter without significargt iosccuracy.

Taking into account the above results, we decided to usemBlfters 10 bits long, 4
hash functions, and 30 objects per node (chosen out of ZO'QOembjectﬂ for the rest of

the experiments that use content synopses.

3.4.2 Comparison of Content-Driven Routing and Breadth-Fist Search

In our second set of experiments we compared content-dgueny routing to traditional

flooding-based search.

Average message transfers during a searchFigure[3.4 shows that content-driven rout-

IHence when the number of nodes ranges from 10 to 3000, tHentotdber of objects ranges from 300 to
30000 and the replication degree ranges from 0.15 to 15.
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Figure 3.4: Average number of query mes- Figure 3.5:  Average number of nodes
sages sent during a search for varying net+eached during a search for varying network
work size. size.

ing drastically decreases the number of query messageddresd during a search. As the
number of nodes increases, the number of message transfars dramatically in flooding-
based BFS, while the content-driven routing mechanismsageto keep the message trans-
fers almost at a fixed level. Thus, by using the network badtivefficiently, content-driven
routing is therefore able to scale to thousands of nodes.,AlyRbropagating content syn-
opses of both local and remote peers adaptively, achieeamitimum number of message
transfers needed to answer a query. It is noteworthy thatiéceease in query messages
between ALR and BFS reaches 97%.

Average number of nodes reached during a search.Figure[3.b again shows the ben-
efits of content-driven routing in terms of bandwidth andgassing power usage efficiency.
All the content-driven routing techniques are able to piewyuery hits by contacting more

than one order of magnitude less peers than BFS, which dsratdat of peers unnecessarily.
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Moreover the content-driven routing strategies keep tmebrar of reached nodes at an almost
constant level, while the nodes that are reached with BF® bimearly as the total number of
nodes increases. The Figure shows that the adaptive AL aftitéthniques guide queries
more efficiently than the simplistic IL, in which content gypses are propagated blindly to
all immediate peers. ALR is again the most efficient and $talechnique of all, due to the
adaptive use of the multi-level Bloom filters.

Average Recall Efficiency during a search. Figure[3.6 shows the value of the query
messages that are propagated during a search, in termsrafdh&ibution to the discovery
of possible matches. Even though the flooding of BFS is abtBscover a lot of matches,
the cost of query messages transferred results in its loal refficiency. ALR again has the
highest recall efficiency, followed by the other adaptivatemt-driven routing strategy, AL.

The reason is that adaptive content synopses propagasicegihe Bloom filters where they
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Figure 3.7: Content synopses hits overFigure 3.8: Bloom filter false positives over
misses for varying network size. total positives for varying network size.

are more likely to be needed, achieving better performamae the blind IL. As the number
of nodes grows, the proportion of the total matches dis@a/by the content-driven routing
mechanisms decreases, since the queries are guided, mtorctntact a small number of

nodes and to produce a small number of messages.

3.4.3 Comparison of the Content-Driven Routing Protocols

In our third set of experiments we compared the differenteotadriven routing protocols to
each other in more detail

Content synopses hits over misses. Figure[3.¥ shows how much the query routing
actually benefits from the use of the content synopses. Weerthiat simply placing content
synopses of local content to immediate neighbors (IL) isul$er routing only about 10% of

the queries. On the other hand, adaptively placing conterdpses (AL and ALR) improves
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their usefulness to 20% for AL and to 90% for ALR. By propaggtiocal and remote con-
tent synopses, ALR manages to drastically decrease theerushiBloom filter misses and
achieves a hits/misses ratio close to 1, meaning that halfeofjueries can be routed based
on the content synopses.

False positives over total positives. Figure[3.8 shows that content-driven routing is
extremely accurate. For all three routing strategies tkataontent synopses only a very
small percentage (around 1%) of the total queries that areedobased on them is falsely
routed, due to Bloom filter false positives. Thus, our chatée Bloom filter parameters
allowed us to minimize the false positives.

Total content synopses messagesFigure[3.9 shows the relative cost of the different
content-driven routing protocols, in terms of content g8@s propagation messages. By

simply propagating content synopses only to immediatespékerkeeps the protocol over-
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head low. However the usefulness of the content synopsdstrapproach is limited, as

Figure[3Y indicates. AL on the other hand has to propagat¢ af lcontent synopses for

them to be useful in query routing. ALR, by adaptively progi@gg local and remote con-

tent synopses, manages to route queries effectively ankiggt the protocol overhead at a
reasonable level, even as the number of nodes increaseasovdrhead is acceptable, if one
takes into account the drastic saving of query messages AhRR\aes. Thus, combining sev-
eral content synopses in one message, as ALR does, redgo#igantly their dissemination

overhead.

Total query messages.Figurel3.ID shows the savings in query messages adaptte-str
gies achieve. Especially ALR, by guiding queries throughube of local and remote content
synopses, manages to keep the number of query messagesd@asily scale to thousands
of nodes. Bandwidth is thus used more efficiently in ALR thawmamy other of the content-
driven routing protocols. ALR reduces the number of quergsages by utilizing a lot of
content synopses and placing them intelligently in the nétwNotably, ALR decreases the
number of query messages transferred by half an order of itn@grcompared to AL and by

one order of magnitude compared to IL.

3.4.4 Adaptive Content-Driven Routing in Dynamic Environments

In our fourth set of experiments we evaluated our protocoks imobile environment, where
peers leave the network dynamically. We gradually discotatepeers throughout the exper-

iment run and we conducted experiments for disconnecteeashing 10, 20, and 30% of the
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Figure 3.11: Bloom filter false positives Figure 3.12: Content synopses hits over
over total positives for varying percentage misses for varying percentage of discon-
of disconnected nodes. nected nodes.

total number of peers, which was initially 3000. We repo# #ifects of the disconnections
on the Bloom Filter behavior.

False positives over total positives. Figure[3.Ill shows that content-driven routing
remains very accurate even when a lot of peers disconneetn@&ighbors of a leaving peer
realize the disconnection and update their summariesevpeiers further away also update
their synopses when they are notified bRI&SCONNECTED message they receive from the
immediate peers. Hence false positives are not increasttelpeer disconnections.

Content synopses hits over misses. Figure[3.IP shows that peer disconnections do
not considerably affect the success of the synopses in qoating either. ALR, which is
the most aggressive mechanism in synopses disseminatien routes queries successfully
using the summaries. When a lot of peers disconnect, lesgpsgs are available to help in

guery routing, hence a small degradation in the hit ratio.
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3.5 Summary of Results

By comparing the different content-driven routing protisctor a variety of performance
metrics, and also by evaluating their characteristics imgarison to a very different but
common approach (BFS), we were able to quantify our clairgarding the advantages of

adaptive content-driven routing:

1. Counting Bloom filters can provide a very accurate reprizg®n of the peers’ content.

Less than 1% of the queries are incorrectly routed due te fadsitives.

2. Content-driven routing drastically decreases the numbguery messages transferred
during a search, allowing very efficient use of the netwomkdweidth. When adaptively
propagating local and remote content synopses, the sainngsery messages can
reach 97%, compared to a flooding-based mechanism and yataimahigh recall

efficiency.

3. Content-driven routing can answer queries by contactioge than one order of mag-
nitude less peers than a flooding-based mechanism, all@fficgent use of the nodes’

processing power.

4. Content-driven routing is able to scale to thousands efgeAs the network size
grows, the routing mechanism can still provide query hitsilevkeeping the number
of query messages and nodes contacted during a search at abnetant levels.

5. Content-driven routing remains accurate and robust svéaighly dynamic environ-
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ments. Content synopses continue to accurately summages’gontent and remain

useful for query routing even after a lot of peer disconmersi

. Adaptive content-driven routing enables us to make mwattebuse of the content
synopses than blind content synopses propagation. MwigtBloom filters that are
placed strategically in the network are able to guide gseaimost 5 times more often

than simple Bloom filters which are propagated blindly toithenediate peers only.

. In the adaptive content synopses propagation stratagidti-level Bloom filters are
able to guide queries approximately 4 times more often tiraple Bloom filters are
and yet keep the total number of content synopses propagatssages 4 times lower

than when using simple Bloom filters.

. By propagating local and remote Bloom filters adaptivelgry messages can be de-
creased by half an order of magnitude compared to adaptogagation of just local
Bloom filters and by one order of magnitude compared to blirapagation of local
Bloom filters to all immediate peers. Thus, adaptive local eemote content syn-
opses propagation offers the best performance of all comdpstrategies in terms of

scalability, bandwidth usage, processing power usageseadl efficiency.
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Chapter 4

Related Work

In this chapter we review related efforts in query routingdi®n4.1) and data dissemination

(SectiorT4.R) in overlay networks.

4.1 Query Routing

Several mechanisms have been proposed to facilitate segratpeer-to-peer networkis [24,
24,37]. In this Section we discuss the major approachestaidrelevance to our content-

driven routing architecture.
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4.1.1 Unstructured Overlays
Breadth-First-Search

The initial version of Gnutella, employed a simple floodimgsed query routing protocol
(bounded Breadth-First-Search). Without imposing anycstire on the system, peers would
randomly connect to other peers and propagate queries itongighbors within a certain
radius. Building upon this protocol several efforts haveuged on improving the efficiency

and scalability of searching in unstructured overlays.

Super-Peers

QRP (Query Routing Protocol) of RFC-Gnutella 0.6/[18] enyplaltra-peers to filter queries
and only forward them to the leaf nodes that are most likelyaiee a match. This filtering
is done by looking the query words through a hash table thaeig by the leaf node to
its ultrapeer. Similar is the approach followed by FastKracproprietary protocol used by
KaZaA |22] and other file sharing applications: Super-p&etis higher networking, storage,
and processing capabilities volunteer to maintain meta-fa files located in regular peers.
This way queries have to travel only through a network bankboefore they reach nodes

that can offer results.

Random Walks

Random walks[[25] have been another suggested alternatigedry flooding. In this ap-

proach, a peer randomly forwards its query to k of its neigbbBach of these peers forwards
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the query to one of its neighbors and by repeating this peokeandom walks through the
network take place. Similarly to that technique, the protproposed in[[211] allows peers to
propagate queries to k random neighbors. This way the nuoflvealks increases exponen-
tially. In [B] biased random walks are combined with flow cqohtand topology adaptation

to take into account the heterogeneity of the peers

Query Caching

Efforts on utilizing the previous queries and their replese also been made. In_[46] the
keywords of the queries are used to compute the similarithefquery message to previ-
ously seen queries, to probabilistically forward the quergnly a subset of the nodes. This
technique relies on knowledge collected locally at the pgenonitoring the messages prop-
agated in the network, while in our approach summaries o&tieal content of other peers
are disseminated. Caching the results of queries, whiliérarity partitioning a network in
layers is proposed i [45]. In addition to a local index, tke¢ps indices of local files, each
peer maintains a response index, which caches the querysrdsat flow through the peer.
While this work also aims at reducing search traffic, the apph followed focuses on query

caching and not on content summarization.

Routing Indices

In [8] Routing Indices are proposed as a means to guide cuineards the direction of the

requested object. Each peer maintains statistics whidbhatelhow many objects are reach-
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able through each neighbor (compound routing index). Iwipgpthis basic protocol, the

number of hops required to reach an object (hop-count rginidex) and the cost of storing
different routing indices (exponentially aggregated mogiindex) can be taken into account.
In our approach, Bloom filters provide a more precise consemmarization mechanism

which should enable more efficient query routing.

Depth-First-Search

Censorship resistance has been the focus of the creatorsasidt[[6]. Each peer maintains
a routing table of addresses of other peers and of keys oftfjeets they are storing. Using
these routing tables a bounded Depth-First-Search takes,ptombined with caching of the

retrieved objects in intermediate nodes. This way anonyaritl redundancy are achieved.

Centralized Indices

Similar to the original Napstel [29] peer-to-peer file-shgrapplication, BitTorrent 2] re-
lies on a centralized database for locating data objectéiké&JNapster though, this central
location (tracker) allows a peer to retrieve pieces of threesdata object concurrently from
different peers. To punish free-riding, peers prefer tqoewate with peers they have received

responses from (tit-for-tat).
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4.1.2 Structured Overlays

Structured overlay network$ [R6,132,139, 42] 47] handle tiocaand routing as a single
problem and impose a structure in the system by mapping tjeetsito particular nodes.
Also referred to as “Distributed Hash Tables (DHTSs)”, stamed overlays employ different
algorithms to assign object keys to nodes to guarantee kegva in logarithmic time.
Chord [42] uses consistent hashing and places the node IBsvirtual ring. CAN [32]
suggests a multi-dimensional node ID coordinate space aps keys in this space using
uniform hashing. Tapestry [47] and Pasiryi[39] employ a ®lasstyle global mesh network
and locate a key in steps, by matching it with the suffix or grefithe node ID respectively.
Finally Kademlia[[26], when trying to match a key to a node Uifilizes the XOR metric to
calculate the distance in the key space.

Even though structured overlays achieve object retrieMabunded time, they have tradi-
tionally been inherently limited in other ways [4, 5]: They dot support complex keyword-
based queries without constraints on data placement, thapidake peer heterogeneity into
account, and do not handle robustly network dynamics, liaesive peer arrivals, departures,
or failures. Several efforts have been made to address #ikeaibove issue5i[4]. Keyword-
based searching has been made feasible by maintainingadviedices that map keywords
to objectsl[34]. In this approach the partitioning is vatjeneaning that each node maintains
pointers to all the objects that contain a specific keyworbhoBh filters are used to reduce
the bandwidth required to answer “AND” queries (which ndesldooperation of more peers’

incremental results to be answered), and to cache objextTis address peer heterogeneity
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the virtual hosts approach is used, according to which a padeipates in the peer-to-peer
system as several logical hosts, proportional to its reiquresessing capacity.

In our work we focus on unstructured, dynamic, self-orgagnetworks, in which peers
can decide locally what objects to store and can join theegystt random times and leave it
without a priori notification.

Similar to our approach, Rhea and KubiatowiCz|[36] propogeababilistic location
protocol based on attenuated Bloom filters, which improweslatency of locating files.
Again, the difference from our mechanism is that they pldeedbjects to specific nodes
based on some keys and use these keys to route the requdsatmes. Furthermore, we
investigate different algorithms for disseminating thatemt synopses. Aspnes etll [1] have
shown that there is no need for such global coordinationam#twork. Our approach has the
advantage that it does not impose any structure; we assathésystem is self-organizing,

driven only by decisions made locally at the peers.

4.2 Data Dissemination

Our work builds upon([28] and [31]. In 28] the concept of camt summarization was in-
troduced, while in the current work we focus on mechanismsHe dissemination of the
content synopses, we present more elaborate summarizationiques and discuss perfor-
mance in highly dynamic environments. One of our criteriatfee adaptive selection of

the content synopses recipients is the notion of interegfdained in[[31]. In this Section
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we discuss relevant research efforts on data disseminetipeer-to-peer and large-scale

distributed systems.

4.2.1 Anti-Entropy Protocols

Planet-P[[9] locates objects by replicating globally twaadstructures: A membership di-
rectory and a compact content (term-to-peer) index. Membessip about changes to keep
these data structures updated and loosely consistentipmsis done by pushing rumors to
random peers and by pulling information from random peersoAtent ranking algorithm
based on the vector space ranking model is also used, to fipdhighly relevant documents
to a query. The set of terms in each peer’s local index is suzethusing a Bloom filter.
The global index is used to find peers that have a term, andthieelocal index is used to
return the specific documents. The cost of storing and maintathe global data structures
makes the system unsuitable for users with modem-speecectoms, low storage capabil-
ities, or for networks of more than some thousand peers. Gehanism on the other hand
does not rely on any global knowledge of the network and teusiaimum overhead and no
need for structure.

Rumor spreading algorithms have been proposed, that afiapilistic guarantees, in-
stead of ensuring strict consistentyl[44]. For example rid-{A1] uses a hybrid push/pull
rumor dissemination algorithm. A new update is pushed byrthiator to a subset of peers
that are affected by it, because they have the original mersi the data item, and is further

propagated by them. Peers that have been disconnectetatieanot received updates for a
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long time, or that have received a pull request but are nat $tiney have the latest update,
pull updates from one or more other peers. Two parametergrtbability of forwarding an
update, and the fraction of the total replicas to which pestiglly decide to forward an up-
date, are being considered for spreading the rumors. Theqmiautilizes P-Grid’s network

infrastructure to route messages.

4.2.2 Meta-Data Caching

CUP (Controlled Update Propagation) [38] is used for maig caches of meta-data for
locating content. A node receives and propagates updases! lmn personal economic in-
centives. The investment return is secured when a node caveaueries using the stored
meta-data, instead of having to further forward them. Eamferdecides whether to regis-
ter for receiving and propagating updates for an item adogrtb popularity (based on the
number of queries received for that item)-based incenteiéser probabilistic, or log-based,
also taking into account its workload and/or network cotirgyg. Our Bloom filter-based

approach focuses on large-scale, unstructured networks.

4.2.3 Hierarchical Data

Breadth and Depth Bloom filters have also been used for sumnimghierarchical data struc-
tures [23]. These however focus on specific data structgred) as XML documents and

assume a hierarchical network organization.
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4.2.4 Web-Caching

The Bloom Filter mechanism has also been used in Summaryedagéhin the context of
web-caching. The authors have shown that Bloom filter remtagions are economical and

reduce the bandwidth consumption in the network.

4.2.5 Streaming Data

Work has also been done on filtering and disseminating strepdata [41], where data
repositories are organized hierarchically according &rtboherency requirements, as well
as on overlay topologies for routing real-time media stre&@etween some publishers and
many subscribers [17]. In_[41], in order to provide updatekighly dynamic, streaming,
and aperiodic data, an organization of data repositoripsigosed. The repositories are or-
ganized hierarchically, with those that have the highelseoency requirements placed closer
to the data source. Data updates are pushed down that lhigrardy to the repositories
that require them (according to their coherency requirégg)emRepositories are placed in a
way that their coherency requirements prgt met, so that repositories with more stringent
coherencies end up serving repositories with more loosereokies. Back-up parents are
used to handle repository or communication link failurestive back-up parents deliver data
with less stringent coherency, reducing the overhead ofighirg resiliency and enabling the

detection of the failure.

45



4.2.6 Data Replication

Several efforts have focused on techniques for replicadi@ig in peer-to-peer networks.
In [[7], different replication strategies are evaluatedd am optimal is found between two
extremes, a uniform and a proportional, which offer the wpesformance. In[]13] load

balancing in unstructured peer-to-peer networks is aellidy object replication. The Fair-
ness Index of the distribution of the load across the pearsad to drive the load balancing
decisions. The problem we consider differs in that we focugligseminating pointers to
the data instead of the actual data. Our goal is to enableeeffiobject retrieval rather than

alleviating data serving hotspots.
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Chapter 5

Conclusions and Future Work

In this work we have presented mechanisms for adaptive dss&rdination and content-
driven routing of queries in large-scale, unstructuredrlayenetworks. Based on content
synopses, nhodes can forward queries intelligently onléar fpeers that are highly probable
to provide replies. By propagating the synopses adaptivelynave shown how they can be
strategically placed in the network, where they are mosbainty going to be needed. We
have simulated large-scale overlays of thousands of pedralao verified the robustness of
our mechanism under dynamic peer disconnections. We hampared our content-driven
routing mechanism to traditional flooding-based searctorfgnd out tremendous savings in
guery messages. Thus, our approach is scalable and hidicigmtf in terms of bandwidth
and processing power usage. We have compared three diffsmeopses propagation strate-
gies. Our results show that adaptive propagation of lochlamote synopses performs much

better than blind propagation to immediate peers, or justllsynopses propagation.
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Our future work includes the comparison of our push-basetbpol to the analogous
pull-based, as well as investigating the construction efrlays to efficiently propagate con-
tent synopses. Moreover, taking into account more parasweteen deciding where to prop-
agate the content synopses and experimenting with the sgagmopagation depth might
also be interesting. Finally, we plan to investigate in die¢kee behavior of content-driven

routing when built on top of message routing protocols fobiteoad hoc networks [1.9].
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