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ABSTRACT OF THE THESIS

Adaptive Data Dissemination and Content-Driven Routing inPeer-to-Peer Systems

by

Thomas S. Repantis

Master of Science, Graduate Program in Computer Science
University of California, Riverside, August 2005

Dr. Vana Kalogeraki, Chairperson

Peer-to-Peer systems have emerged as a cost-effective means of sharing data and services

and are offering fault-tolerance and self-adaptation in large-scale environments. However,

the efficient location of data objects or services in a fully decentralized, self-organizing,

unstructured overlay network remains a challenging problem. Most of the current solutions

rely on maintaining global knowledge or generate large amounts of traffic and as a result do

not scale well.

In this work we propose adaptive data dissemination and content-driven routing algo-

rithms for intelligently routing search queries in large-scale, unstructured systems. In our

mechanism nodes build and maintain content synopses of their objects and adaptively propa-

gate them to the most appropriate peers. Based on the contentsynopses, a routing mechanism

is being built to forward the queries to those nodes that havea high probability of provid-
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ing the desired results. Through extensive simulation studies of networks of thousands of

nodes and for different content synopses propagation strategies, we show that our approach

is highly scalable and significantly improves resources usage by saving both bandwidth and

processing power.
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Chapter 1

Introduction

The explosive growth of rich-media online content, such as audio, video, news articles, im-

ages, and documents has created new challenges for real-time collaboration among multiple

users in large-scale distributed environments. At the sametime, advances in the networking,

processing and storage capabilities of personal computershave signaled the emergence of

peer-to-peer (P2P) systems as a platform for providing and receiving data and services. Ac-

cording to the peer-to-peer paradigm, nodes act autonomously to form large-scale distributed

systems that enable the sharing of their resources. The peers form an overlay, as is shown in

Figure 1.1, a logical network over the physical network, andact as both clients and servers.

They employ their own location and routing mechanisms and maintain soft state information

about other nodes. The peers can be geographically distributed, heterogeneous in their re-

source capabilities, and dynamic in their participation inthe system. Peer-to-peer systems

have been used with great success for storing and sharing data [18, 27, 10] as well as for per-
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Figure 1.1: The peers form an overlay on top of the physical network.

forming distributed computations [40, 16, 12]. Some of their attractive features include cost

effectiveness (by aggregating existing resources), increased autonomy (by self-organizing),

improved scalability (due to the absence of a central coordinator’s bottleneck), and reliability

(due to lack of a single point of failure).

Two main approaches have emerged for constructing peer-to-peer networks:structured

andunstructuredoverlays. Structuredoverlay networks are organized in such a way that

objects are located at specific nodes in the network and nodesmaintain some state informa-

tion, to enable efficient retrieval of the objects. On the other hand, inunstructuredoverlay

networks, objects can be located at random nodes, and nodes are able to join the system at

random times and leave it without a priori notification. Hence, unstructured overlays are bet-

ter in coping with churn [35] –the continuous process of nodearrival and departure– and the

heterogeneity of the peers. Furthermore, unstructured overlays have been deployed and are

actively been used by millions of Internet users.
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However, in an unstructured topology several design issuesarise, one of the most chal-

lenging ones being the efficient search and retrieval of dataor services1. The major issue is

that no central manager can have an accurate global view of the system’s contents. The prob-

lem is complicated further by the fact that the environment is dynamic and heterogeneous.

Peers join, leave, and fail without a priori notification andhave very different and restricted

processor, storage and communication capabilities. Finally, in a large-scale peer-to-peer net-

work, the amount of traffic generated by queries can be overwhelming.

Traditionally, search in unstructured peer-to-peer networks is performed based on key-

word queries by flooding the network with messages and propagating the search query hop-

by-hop until the desired answer is found. The problem with this approach is that it fails to

take into account the probability of a node to be able to provide the asked object. Hence,

the search messages travel a large number of hops, wasting processing power of many nodes,

and producing large amounts of network traffic, while the answer to the query is delayed.

Recently proposed techniques [46] use the keywords of the queries to compute the simi-

larity of the query message to previously seen queries, to probabilistically forward the query

to only a subset of the nodes. These rely on knowledge collected locally at the peer by

monitoring the messages propagated in the network.

Content summarization [28] is another technique that has been proposed to tackle the

aforementioned problem. It is recently receiving a lot of attention as a means to reduce

latency, balance the query load and alleviate hot spots. Nodes construct summaries of the

1We will be using the term “object” to refer to both data and services.
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objects in their local stores and propagate them to their peers. By having access to these

summaries, a node can perform a local search to determine which nodes have the requested

object and thus can efficiently decide where to propagate a query, to maximize the probability

for a fast reply.

However, when using the content summaries, it is important to intelligently decide to

which nodes and how often to propagate them to the network. Since content summaries are

passed around in messages, they introduce some performancecost. Storing the summaries

of the contents of all the peers in the network in one node is impossible due to bandwidth

and storage limitations and also because of the dynamic behavior of the peers. In such large-

scale systems, changes to the stored data happen more often than they can be communicated

to a single peer. Thus, the overlay network can greatly benefit from intelligent decisions

regarding when and where content summaries are propagated.

In this work [33] we target the problem of data disseminationin unstructured, decen-

tralized peer-to-peer networks. We propose adaptive data dissemination and content-driven

routing protocols to reach the requested objects, while keeping the number of propagated

messages small. In our mechanisms nodes build and maintain content summaries of their

local data and adaptively disseminate them to their most appropriate peers. Peers use the

Bloom filterdata structure [3] to build a synopsis of their local content. Bloom filters allow

us to answer cardinality queries with a certain probability. Nodes disseminate their content

synopses to other peers, so that they can use them to efficiently route queries for objects.

We investigate and compare three different techniques for adaptively selecting the most ap-
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propriate recipients of a peer’s content synopsis, taking into account the number and type of

queries sent by other peers in the past. The goal of the adaptive decision is to selectively

propagate the synopsis to those nodes that need them the mostfor their routing decisions,

while keeping the number of transferred synopses low. Our experimental results validate the

performance benefits of our approach.

1.1 Contributions

Our major contributions are:

1. We propose acontent-driven routing mechanismfor finding objects in large-scale,

unstructured peer-to-peer networks. Our mechanism propagates the queries to those

peers that have a high probability of providing the desired results. The mechanism is

driven by content synopses that are stored locally at the peers.

2. We proposeadaptive data dissemination algorithmsthat decide to which peers to

propagate the content synopses to improve the search and retrieval of the objects and

make more efficient use of the bandwidth and processing powerresources. The novelty

of our approach is that content summaries are propagated dynamically to selected peers

based on the requests and replies generated by those peers.

3. We present an extensive experimental study of large-scale networks, that illustrates that

our mechanism reduces the number of messages sent, the number of peers contacted
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and achieves high recall efficiency, in comparison to other popular searching tech-

niques, even in the presence of disconnecting nodes. We compare the performance of

our mechanism under different content-based propagation strategies and discuss their

results.

The rest of the thesis is organized as follows: In chapter 2 wepresent the architecture

of our adaptive data dissemination and content-driven routing mechanism in detail. In chap-

ter 3 we describe the experimental evaluation of our approach and discuss our results. We

review related work in query routing and data disseminationin overlay networks in chapter 4.

Finally, we draw conclusions and explore avenues to future work in chapter 5.

6



Chapter 2

System Architecture

In this chapter we present our system architecture in detail. Section 2.1 presents our net-

work model, while Section 2.2 gives an overview of our system’s operation. Section 2.3

describes the content synopsis data structure our system uses, and Section 2.4 describes the

content-driven routing mechanism. Section 2.5 presents the content synopses dissemination

strategies, followed by Section 2.6, which describes the parameters taken into account in

the adaptive synopses dissemination. Finally, Section 2.7discusses implications of dynamic

behavior in the synopses dissemination.

2.1 Overlay Model

We consider an overlay network ofN nodes (peers) that store objects. The overlay is con-

structed on top of the physical network and the peers are linked through virtual connections.

Each peer has a globally unique identifier (e.g. port:IP) andmaintains connections with other
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peers. The network is unstructured, decentralized and self-organizing, meaning that peers

make their own decisions on which peers to connect to or to query for objects. The number

of connections of a peer can vary and is typically restrictedby the resource capabilities of the

peer. The peers of a node can be randomly selected, defined a priori based on some optimiza-

tion criteria (such as round-trip delays), or dynamically established and revised in response

to the node interactions or changes in the processing and networking conditions [17]. Our

mechanisms aim to facilitate searching in any type of unstructured peer-to-peer network.

Peers that are not directly connected communicate through relaying. In other words, peers

not only exchange messages with their neighbors, but also route messages coming from other

peers.

Each object stored in a peer is uniquely identified by the means of intrinsic references [14]

which are generated when the object is first inserted in the system. Intrinsic references are

based on the hash digest of the object’s actual contents rather than its name or location and

therefore allow us to create persistent, state-independent, and immutable storage. Alterna-

tively, each object can be associated with a set of keywords to allow meta-data types of

searching. The mechanisms presented in this paper are orthogonal to the type of search and

therefore we just focus on searching by an object’s intrinsic reference.
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2.2 System Operation

Each peer uses theBloom filterdata structure [3] to build a synopsis of the content in its local

store. Bloom filters are compact data structures that represent a set of objects stored at each

peer by using an array of bits; each bit takes a binary one or a zero value. The cardinality of

an object is checked by comparing the bit array generated by hashing the object by multiple

hash functions, to the bit array of the Bloom Filter data structure. This allows us to answer

with a certain probability whether the object is in the groupor not. Each peer stores two

types of filters, alocal filter for the objects available locally at the node andremote filtersfor

objects stored in remote peers. The node sends its local filter to remote peers. The recipients

of the filter are selected adaptively, by taking into accountthe number and type of queries

sent by the peers. The synopses are used to efficiently route queries for objects. The goal of

the adaptive decision is to selectively propagate the synopsis to those nodes that need them

the most for their routing decisions, while keeping the number of transferred synopses low.

Peers search for objects by sending query messages to their immediate neighbors. Those

queries are evaluated locally in each peer and in case matching objects exist, results are

returned to the searching peer. Otherwise, the query is routed to those of its peers whose

synopses present a closest match. Figure 2.1 illustrates our system’s operation.
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Figure 2.1: System operation example. Each node maintains alocal content synopsis, as well
as content synopses of remote peers. Using the synopses eachnode is able to route queries
more efficiently. In this example, peer C propagated its content synopsis CS to peer B. B
based on CS was able to route peer A’s query Q only to C, and the result QH is routed back
to A.

2.3 Content Synopses

In this Section we describe the data structure we use to summarize each peer’s content. As-

sume that peerp has a group ofn objects given by the setSp = a1, a2, ..., an. The Bloom

filter that represents the setSp is described by a bit arrayBFp of lengthm, all initially set to

0. We assumek hash functions,h1, h2, ..., hk with hi : X → 1...m. Each hash function maps

each element of the setS to a value between1...m in a totally random fashion. For each

elements ∈ S, the bits at positionh1(s), h2(s), ..., hk(s) are set to 1. Note though, that, a bit

may be set to 1 multiple times. To determine whether a certainelementx is in S, we check

whether all the bits given byh1(x), h2(x), ..., hk(x) are set to 1. If any of them is 0, then we

are certain that the elementx is not in the setS. If all h1(x), h2(x), ..., hk(x) are set to 1, we

conclude thatx is in S, although there is a certain probability that we are wrong. This is the
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case that a Bloom filter may yield afalse positive. After insertingn elements into a Bloom

filter of sizem usingk hash functions and lettingp0 be the probability that a specific bit is

still 0, the probability of a false positive (the probability that all k bits have been previously

set) is shown [3, 15] to be:perr = (1 − p0)
k =

{

1 −

{

1 − 1

m

}kn
}k

≈

{

1 − e
−kn

m

}k
. As

this equation shows, there exists a trade-off between k, m, n, and the accuracy of the objects’

representation using Bloom filters. This trade-off is investigated experimentally in 3.4.1.

Our system exploits the probability that a small number of false positives does not greatly

affect the performance of our searching mechanism. This fact makes the Bloom filter ap-

proach highly suitable for locating objects accurately andfast.

To support the removal of members from the sets represented by the Bloom filters we use

counting Bloom filters. In this approach, a counter is added to each bit in the filter, so that the

number of objects that are hashed in the same position is counted. An example of a counting

Bloom filter is shown in Figure 2.2 (i).

Each peer may store content synopses for several peers connected to it, indexed by their

IDs. Moreover, each of those content synopses, may contain not only the Bloom filter of

the peer’s local content (local filter), but also Bloom filters of the content of remote peers

connected to it (remote filters). Hence, to store multiple content synopses, we use multi-level

Bloom filters. Figure 2.2 (ii) shows an example of a multi-level Bloom filter. Notice that

the Bloom filter of each level is not merged but appended to that of the previous level. That

approach consumes more memory space to store the Bloom filters, but allows us to estimate

the location of a larger number of objects more accurately.
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ii)

h1(a1) h2(a1) h3(a1) h4(a1)

h1(a2) h2(a2) h3(a2) h4(a2)

1 1 1 1 1

1

1 1

1 1 0 0 0 0 0 1 1 1

1

1

1

1 0 0 1 10101 10 0 0

i)

Figure 2.2: (i) Counting Bloom filter example. The counters keeps track of the number of
objects that are hashed in the same position. (ii) Multi-level Bloom filter example. The filter
of each level is appended to that of the previous level.

2.4 Content-Driven Routing

In our content-driven query routing mechanism each peer stores the content synopses of other

peers, and utilizes that information in order to route queries more efficiently. In particular,

when a peer receives a query, apart from searching its local content, it also searches the stored

content synopses of other peers. If there is no match in its local content, the peer forwards the

query only to its immediate peers whose synopses state that they or their neighbors contain

the requested object. The pseudocode of the algorithm for checking the content synopsis of

a peer is presented in Figure 2.3. Only if the object is not found in any content synopsis, is

the query forwarded to a set of random neighbors.

If the query cannot be satisfied locally, the node must decideto which of the peers to

propagate it next. Thus, it searches the contents of the stored synopses of remote peers

and the query is propagated only to the peers whose synopses indicate that they contain the
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public boolean checkAllRemoteSynopses(Node conn_node, Document doc) {

ContentSynopsis remoteConSyn =
(ContentSynopsis)content_synopsis.remoteBFs.get(conn_node);

if (remoteConSyn.localBF.isMember(docID) == true) {
// Local Bloom filter positive
if (conn_node.hasContent(doc) == false) {

// Local Bloom filter false positive }
return true; }

for (Enumeration e = remoteConSyn.remoteBFs.keys();
e.hasMoreElements(); ) {
Node node = (Node)e.nextElement();
ContentSynopsis ConSyn =

(ContentSynopsis)remoteConSyn.o_remoteBFs.get(node);
if (ConSyn.localBF.isMember(docID) == true) {

// Remote Bloom filter positive
if (node.hasContent(doc) == false) {

// Remote Bloom filter false positive }
return true; } }

// Else, we have no positives at all: neither local, nor remote.
return false; }

Figure 2.3: The algorithm for choosing peers to forward a query. For each peer that its
content synopsis has been stored, its local and remote Bloomfilters are checked for matches.

requested object. These are the peers with the highest probability of actually containing the

object. If the object is not found in any synopsis, the node forwards the query to a random

subset of the immediate peers. To provide a termination condition so that messages are not

propagated indefinitely in the network when no objects are found, each message is associated

with a timeto live (TTL) field that represents the maximum number of times the message

can be propagated in the network. The TTL value is decreased each time the message reaches

a peer. A node that receives a message with TTL zero, stops forwarding the message. Also,

if a node receives the same message from two different peers,it discards the duplicate.

13



Figure 2.4: An example of the content synopses dissemination strategies IL, AL, and ALR.
According to IL, node C propagates only its local synopsis toall its immediate peers (peers
one hop away). In AL, C propagates its local synopsis to selected immediate and remote
peers. With the latter a direct connection may need to be created. In ALR, C propagates both
its local and stored remote synopses to selected immediate and remote peers.

During the system operation, the node keeps statistics about the queries and the replies

generated or propagated through the peer. In particular, itkeeps track of (1) the number of

queries sent by the peer and the replies (query hits) received to its queries from other peers,

(2) the number of queries received at the peer and the repliesit generates to other peers.

These are used to decide to which peers to disseminate a synopsis of the local content of the

peer.

2.5 Content Synopses Dissemination Strategies

Since the bandwidth used for transferring content synopsesis limited, as well as the space in

nodes to store them, each peer selects only some of the other peers to propagate its content

synopsis. We have implemented and compared three differentstrategies for content synopses

propagation.
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2.5.1 Propagate local content synopsis to immediate peers (Immediate

Local – IL)

According to this strategy each peer sends its local contentsynopsis to all its immediate peers

and routes queries by taking into account only the content synopses of its immediate peers.

This strategy is simple, but of limited use: Since only a small number of content synopses is

examined for the routing decision to be taken, a lot of the queries cannot be directed using the

content synopses. The protocol then resorts to randomly choosing peers to further forward

the query and thus generates a lot of traffic.

2.5.2 Propagate local content synopsis to peers selected adaptively (Adap-

tive Local – AL)

Using this more elaborate strategy, each peer sends its local content synopsis to a selection

of peers, according to several parameters. Again the routing is done following the synopses

of the local content of other peers. The recipients of the content synopsis of a peer are

selected not only among its immediate neighbors, but also among remote peers. The adaptive

selection of the synopses recipients aims to make the content synopses available to the peers

that have a high probability of using them again in the futureand yet keep the number of

synopses transfers limited. The parameters used to decide to which peers to propagate the

content synopses are described in Section 2.6. As the numberof synopses used in routing is

again limited, this strategy is also often obliged to resortto randomly forwarding queries.
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2.5.3 Propagate both local and remote content synopses to peers se-

lected adaptively (Adaptive Local Remote – ALR)

This multi-level strategy differs from the previous, in that the peers propagate and use for

their routing decisions not only the synopses of the local content of their immediate peers

or peers they have interacted with, but also synopses of the content of remote peers. More

specifically when a peer propagates its local content synopsis to other peers, it also prop-

agates the content synopses of remote peers it has stored. Other peers store those remote

content synopses together with the local synopsis of that peer and use them to route queries

to it. Since each peer stores and propagates remote content synopses of peers it is connected

to, it can then easily route queries for content stored in them. Obviously this strategy enables

the peers to examine a lot of content synopses before routinga query. Therefore a lot of

the queries can be routed accurately and randomly forwarding queries is not used that of-

ten. The processing time spent in examining the content synopses is still little. The amount

of information transferred between the nodes in order to propagate the remote and the lo-

cal synopses is higher than in the previous strategies, but still restricted through the use of

adaptive selection of the synopses recipients. As already mentioned, the parameters used to

decide to which peers to propagate the content synopses are described in Section 2.6.

Figure 2.4 presents an example of the different content synopses propagation strategies

discussed above. A point that needs to be made is that contentsynopses do not necessarily

have to be propagated as individual messages, but can ratherbe piggybacked on the current
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usage messages (e.g. queries and replies). As already mentioned, all of the above strategies

are assuming a simple network infrastructure, where peers route queries through their im-

mediate neighbors. In AL and ALR a more advanced overlay network is built, where peers

open or can potentially open direct connections to peers that provide them with good results

(“share similar interests with them”) and routing can also be based on content synopses of

peers outside a node’s current horizon. In that case, where interest locality among the peers

is exploited, queries can be routed even faster and more accurately, at the cost of manag-

ing many –probably short-lived– connections and of storing, processing and propagating a

large number of content synopses between many different peers. Allowing “transient” con-

tent synopses to traverse the network would be the physical continuation of this approach.

Yet, even though the cost of propagating a synopsis may not betoo high, in a large-scale

system the cost of maintaining up-to-date information throughout the path that a transient

content synopsis travels, about where it came from and abouthow to reach its source would

be prohibitive. This would be even more the case for dynamic environments, with frequent

topology changes or content updates.

The frequency with which a peer propagates its content synopsis depends on the number

of queries it receives. The number of content synopsis messages propagated depends on the

thresholds of the several parameters discussed in Section 2.6.
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peer idi The peer’s globally unique identifier.
connected peersi The list of peers currently connected to this peer.
object listi The list of objects stored locally at the peer.
queries receivedi The total number of queries this peer has processed.
searh msgs receivedi The number of search messages this peer has received, indexed by the IDs of the query originators.
local hitsi The number of local hits generated by queries, indexed by theIDs of the query originators.
sent contentSynopsis toi The list of peers that have received a current version of the local content synopsis.

Table 2.1: Parameters of each peeri in the system.

2.6 Adaptive Synopses Dissemination Parameters

Each node in the system is associated with a list of characteristics, which are summarized in

Table 2.1.

In order to decide more accurately which peers would benefit from obtaining the content

synopses, adapt the selection decision to the current status of the network and thus propagate

the content synopses more efficiently, each peer takes into account several parameters. These

are used by the AL and ALR propagation strategies.

• The number of queriesqi a node has received by a peer, and their frequency. Peers

that have sent a lot of queries to us will most probably make good use of our content

synopsis in their routing decisions. A lot of forwarded queries indicate peers that route

a lot of traffic. They can use our content synopsis to avoid sending us queries for

content we do not have.

• The number of repliesri a node has provided a peer with, and their frequency. This

parameter identifies the popularity of our stored objects among specific peers. Peers

that generated a lot of local hits and got a lot of replies by usto their requests will also

most probably need our content synopsis in their routing decisions.
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• The number of connectionsconni other peers maintain. This parameter identifies the

connectivity degree of a peer and is a factor in estimating the average number of mes-

sages per time unit this peer may route. A peer that plays the role of a hub in the

network, routing many queries, will most probably need the content synopses more.

2.7 Implications of Dynamic Behavior

Since the network is dynamic and self-organizing, nodes mayleave or join independently.

This especially applies to mobile environments. The systemmust be able to propagate con-

tent synopses to reflect such changes in the connections. Moreover content synopses must

be updated whenever an object is added, deleted, or changed in a node’s content. Hence,

updated content synopses must be generated in two cases:

• When a peer detects an update at the local repository (content changes) of objects (new

objects are obtained, existing objects are deleted or new versions of existing objects

are created).

• When a peer detects an incoming or withdrawn peer connection(connection establish-

ment or drop).

2.7.1 Content Changes

When the content is updated, a new content synopsis is disseminated by the peer. To min-

imize the traffic in the network our approach (1) does not generate an update unless the
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contents of the peers have changed and (2) groups individualBloom filter updates into group

updates to propagate them to the peers. Content synopses aredisseminated due to both local

and remote content changes.

2.7.2 Connection establishment

According to the content synopses propagation strategy being followed, a newcomer may

receive content synopses from its neighbors immediately, or adaptively during operation.

The same applies to the newcomer’s decision to propagate itsown content synopsis.

Thus, following a push model, a peer would choose to push its content synopsis to other

peers as soon as it is connected. This will result in the otherpeers replying with their content

synopses. Since peers keep track of where they have sent their content synopsis, duplicates

in synopses propagation are avoided. This is the default method of synopses propagation.

Yet we also discuss a more passive method in the next paragraph, suitable for peers with very

short connection times.

Following a pull model, a peer would choose to ask for the content synopses of other

peers only when it needs to search for something or route a query. This approach would

result in extraneous traffic for explicitly asking for the content synopses, but it might prove

useful in highly dynamic environments. In the case of fast moving mobile users for example,

it might make more sense to allow them to explicitly pull synopses they will need, instead of

bombarding them with synopses of different neighborhoods as they move around.
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2.7.3 Connection drop

When a peer permanently disconnects from the network, neither the content synopses of

other peers stored in it, nor its content synopsis stored in other peers will be useful anymore.

Its immediate peers will sense the disconnected peer and allthe relevant content synopses

will be removed after a time thresholdtr. In addition, aDISCONNECTED message will be

sent to the non-immediate peers to remove their corresponding content synopses.
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Chapter 3

Experimental Evaluation

In this chapter we present a detailed experimental evaluation of our mechanisms. Section 3.1

describes our simulation environment, while Section 3.2 summarizes the characteristics of

the different query routing protocols we compared. Section3.3 presents the performance

metrics we used, Section 3.4 discusses our results, and finally Section 3.5 summarizes the

benefits of our technique.

3.1 Simulation Infrastructure

To investigate the characteristics of our adaptive content-driven routing mechanism in de-

tail we have implemented an unstructured peer-to-peer network using the Gnutella [18] P2P

communication protocol. In order to be able to evaluate systems of thousands of peers, we

have used the Neurogrid simulator [20]. Our implementationof the adaptive content-driven

routing protocol was done in approximately 3500 lines of Java code. The parameters used
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Node Parameters Number of nodes Varying
Network Parameters TimeToLive of query messages 7

Initial number of connections per node 3
Minimum number of connections per node 3
Maximum number of connections per node10
Network topology Random

Content Parameters Size of pool of available objects 2000
Number of objects per node 30
Distribution of objects over nodes Uniform

Bloom Filter Parameters Size of filter, in bits 10
Number of hash functions 4
Size of counter for each position, in bits 4

Simulation Parameter Number of averaged measurements 20
Number of searches per experiment 400

Table 3.1: Simulation settings.

in the simulation are presented in Table 3.1. We chose the network size to vary up to 3000

nodes, an estimate of the number of concurrently active nodes in a university campus.

In our implementation we used counting, multi-level Bloom filters. To create the hash

functions, used in generating the Bloom filters, similarly to [43], we took advantage of a

cryptographic message digest algorithm (SHA-1 [30]) and ofits property of pseudo random-

ness. More specifically, we used SHA-1 to hash strings of arbitrary length, representing the

peers’ content, to 160 bits. We then built the hash functionsby dividing the SHA-1 output

into smaller sets of bits.

Our average results are derived from 20 measurements and each one of those is averaged

from 20 searches. In other words, each experiment run includes 400 searches in total. The

peers’ content is chosen from 2000 sample objects, of which 100 are randomly selected to be

search targets. To demonstrate locality of interests, different peers in the same vicinity may

query for the same sets of objects.
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3.2 Overview of Protocols

We ran simulations to compare the different strategies thatuse content synopses to route

query messages. Those strategies were described in Section2.5 and are briefly summarized

in Table 3.2. We also compared our strategies to a traditional Breadth-First Search (BFS)

algorithm. Even though BFS is not directly comparable to ourcontent-driven routing proto-

cols, we chose to present it here to illustrate the differences and the relative gain from our

adaptive propagation schemes.

Protocol Query Routing Synopses Propagated Synopses Recipients
IL Content-driven routing Local content synopses All immediate peers
AL Adaptive content-driven routing Local content synopses Selected immediate and remote peers
ALR Adaptive content-driven routing Local and remote content synopsesSelected immediate and remote peers
BFS Flooding all immediate peers – –

Table 3.2: The query-routing protocols we compare in the experiments.

3.3 Performance Metrics

We introduced a number of metrics to evaluate both the utilization of the system’s resources,

and the efficiency of the query routing algorithms. Moreoverwe include metrics specifically

for the comparison of the content-driven protocols and the accuracy of the Bloom filters.

Hence, the metrics we used to compare the searching algorithms were:

1. Average Message Transfers. The average number of query messages sent during a

search. This metric indicates how efficiently the network bandwidth is used.

2. Average Nodes Reached. The average number of nodes reached during a search.
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This metric shows how many nodes are contacted to provide results to a query and is

therefore an indication of the efficiency of the search algorithm in terms of bandwidth

and processing power usage.

3. Average Recall Efficiency. Recall is defined as the proportion of all possible matches

to a search that were actually discovered. Recall efficiencyis defined as the ratio of

recall against the number of query messages that have travelled through the network

during that search. Therefore the recall efficiency averageis an indication of the use-

fulness of the query messages that are propagated.

The metric we used to measure the accuracy of the Bloom filterswas:

1. False Positives. This is the number of incorrect reports by Bloom filters; stating that

an object is stored in a peer, when it actually isn’t.

Finally, the metrics specifically pertaining to the content-driven protocols were:

1. Synopses Hits/Misses Ratio. This is the ratio of the content synopses hits against

the content synopses misses. It shows how many of the queriescould be routed based

on the Bloom filters and is therefore an indication of the usefulness of the content

synopses.

2. Filter False Positives/Total Positives Ratio.This is the ratio of the Bloom filter false

positives against the total number of Bloom filter positives. It indicates how many

of the queries were falsely routed based on the Bloom filters,over the total number of
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queries that were routed based on them. Therefore it measures the accuracy of content-

driven routing.

3. Total Content Synopses Messages.This is the total number of messages sent for con-

tent synopses propagation. It measures the content-drivenrouting protocol overhead

(cost).

4. Total Query Messages. This is the total number of query messages propagated. It

measures the efficiency of the network bandwidth usage.

3.4 Analysis

In this Section we present a detailed discussion of the experimental results. In 3.4.1 we

investigate the optimal values for the Bloom filter parameters, while in 3.4.2 we compare our

adaptive content-driven routing to flooding-based search.In 3.4.3 we compare the different

content synopses dissemination strategies to each other inmore detail. Finally, in 3.4.4 we

investigate the accuracy of adaptive content-driven routing in highly dynamic environments.

3.4.1 Bloom Filter Parameters

As already shown in Section 2.3, there exists a tradeoff in the representation of objects

through Bloom filters. Three different parameters may affect the accuracy of the represen-

tation, in other words the number of false positives yielded: The size of the Bloom filter in

bits (memory overhead), the number of hash functions used (computation overhead), and the
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Figure 3.2: Bloom filter false positives for
varying number of hash functions.

number of objects to be represented. We investigated the optimal values for those param-

eters in our first set of experiments, by varying each one of them while keeping the others

constant. We used counting Bloom filters with 4-bit counters, the simplest content-driven

routing algorithm (IL), 4000 possible objects, and 1000 nodes and focused on the number of

false positives.

Effect of filter size to the number of false positives.As Figure 3.1 shows, filter size can

greatly affect the number of false positives. Small filter sizes can result to thousands of false

positives. However false positives are virtually eliminated above 10 bits (when representing

30 objects per filter and using 4 hash functions).

Effect of number of hash functions to the number of false positives. As Figure 3.2

shows, the number of false positives greatly decreases whenusing 4 hash functions or more

(when representing 30 objects per filter and using 10 bits forthe filter size).
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Effect of number of represented objects to the number of false positives. Figure 3.3

shows that when using 4 hash functions and Bloom filters of 10 bits size, not more than 30

objects can be represented by a filter without significant loss in accuracy.

Taking into account the above results, we decided to use Bloom filters 10 bits long, 4

hash functions, and 30 objects per node (chosen out of 2000 unique objects)1 for the rest of

the experiments that use content synopses.

3.4.2 Comparison of Content-Driven Routing and Breadth-First Search

In our second set of experiments we compared content-drivenquery routing to traditional

flooding-based search.

Average message transfers during a search.Figure 3.4 shows that content-driven rout-

1Hence when the number of nodes ranges from 10 to 3000, the total number of objects ranges from 300 to
30000 and the replication degree ranges from 0.15 to 15.
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ing drastically decreases the number of query messages transferred during a search. As the

number of nodes increases, the number of message transfers grows dramatically in flooding-

based BFS, while the content-driven routing mechanisms manage to keep the message trans-

fers almost at a fixed level. Thus, by using the network bandwidth efficiently, content-driven

routing is therefore able to scale to thousands of nodes. ALR, by propagating content syn-

opses of both local and remote peers adaptively, achieves the minimum number of message

transfers needed to answer a query. It is noteworthy that thedecrease in query messages

between ALR and BFS reaches 97%.

Average number of nodes reached during a search.Figure 3.5 again shows the ben-

efits of content-driven routing in terms of bandwidth and processing power usage efficiency.

All the content-driven routing techniques are able to provide query hits by contacting more

than one order of magnitude less peers than BFS, which contacts a lot of peers unnecessarily.
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search for varying network size.

Moreover the content-driven routing strategies keep the number of reached nodes at an almost

constant level, while the nodes that are reached with BFS grow linearly as the total number of

nodes increases. The Figure shows that the adaptive AL and ALR techniques guide queries

more efficiently than the simplistic IL, in which content synopses are propagated blindly to

all immediate peers. ALR is again the most efficient and scalable technique of all, due to the

adaptive use of the multi-level Bloom filters.

Average Recall Efficiency during a search. Figure 3.6 shows the value of the query

messages that are propagated during a search, in terms of their contribution to the discovery

of possible matches. Even though the flooding of BFS is able todiscover a lot of matches,

the cost of query messages transferred results in its low recall efficiency. ALR again has the

highest recall efficiency, followed by the other adaptive content-driven routing strategy, AL.

The reason is that adaptive content synopses propagation places the Bloom filters where they
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Figure 3.7: Content synopses hits over
misses for varying network size.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  500  1000  1500  2000  2500  3000F
ilt

e
r 

F
a

ls
e

 P
o

s
it
iv

e
s
 /

 F
ilt

e
r 

T
o

ta
l 
P

o
s
it
iv

e
s

Number of Nodes

Filter False Positives / Filter Total Positives Ratio

IL ALR AL

Figure 3.8: Bloom filter false positives over
total positives for varying network size.

are more likely to be needed, achieving better performance than the blind IL. As the number

of nodes grows, the proportion of the total matches discovered by the content-driven routing

mechanisms decreases, since the queries are guided, in order to contact a small number of

nodes and to produce a small number of messages.

3.4.3 Comparison of the Content-Driven Routing Protocols

In our third set of experiments we compared the different content-driven routing protocols to

each other in more detail

Content synopses hits over misses. Figure 3.7 shows how much the query routing

actually benefits from the use of the content synopses. We notice that simply placing content

synopses of local content to immediate neighbors (IL) is useful for routing only about 10% of

the queries. On the other hand, adaptively placing content synopses (AL and ALR) improves
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Figure 3.9: Total number of content syn-
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varying network size.
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their usefulness to 20% for AL and to 90% for ALR. By propagating local and remote con-

tent synopses, ALR manages to drastically decrease the number of Bloom filter misses and

achieves a hits/misses ratio close to 1, meaning that half ofthe queries can be routed based

on the content synopses.

False positives over total positives. Figure 3.8 shows that content-driven routing is

extremely accurate. For all three routing strategies that use content synopses only a very

small percentage (around 1%) of the total queries that are routed based on them is falsely

routed, due to Bloom filter false positives. Thus, our choiceof the Bloom filter parameters

allowed us to minimize the false positives.

Total content synopses messages.Figure 3.9 shows the relative cost of the different

content-driven routing protocols, in terms of content synopses propagation messages. By

simply propagating content synopses only to immediate peers, IL keeps the protocol over-
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head low. However the usefulness of the content synopses in that approach is limited, as

Figure 3.7 indicates. AL on the other hand has to propagate a lot of content synopses for

them to be useful in query routing. ALR, by adaptively propagating local and remote con-

tent synopses, manages to route queries effectively and yetkeep the protocol overhead at a

reasonable level, even as the number of nodes increases. That overhead is acceptable, if one

takes into account the drastic saving of query messages ALR achieves. Thus, combining sev-

eral content synopses in one message, as ALR does, reduces significantly their dissemination

overhead.

Total query messages.Figure 3.10 shows the savings in query messages adaptive strate-

gies achieve. Especially ALR, by guiding queries through the use of local and remote content

synopses, manages to keep the number of query messages low and easily scale to thousands

of nodes. Bandwidth is thus used more efficiently in ALR than in any other of the content-

driven routing protocols. ALR reduces the number of query messages by utilizing a lot of

content synopses and placing them intelligently in the network. Notably, ALR decreases the

number of query messages transferred by half an order of magnitude compared to AL and by

one order of magnitude compared to IL.

3.4.4 Adaptive Content-Driven Routing in Dynamic Environments

In our fourth set of experiments we evaluated our protocols in a mobile environment, where

peers leave the network dynamically. We gradually disconnected peers throughout the exper-

iment run and we conducted experiments for disconnections reaching 10, 20, and 30% of the
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Figure 3.11: Bloom filter false positives
over total positives for varying percentage
of disconnected nodes.
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Figure 3.12: Content synopses hits over
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total number of peers, which was initially 3000. We report the effects of the disconnections

on the Bloom Filter behavior.

False positives over total positives. Figure 3.11 shows that content-driven routing

remains very accurate even when a lot of peers disconnect. The neighbors of a leaving peer

realize the disconnection and update their summaries, while peers further away also update

their synopses when they are notified by aDISCONNECTED message they receive from the

immediate peers. Hence false positives are not increased bythe peer disconnections.

Content synopses hits over misses. Figure 3.12 shows that peer disconnections do

not considerably affect the success of the synopses in queryrouting either. ALR, which is

the most aggressive mechanism in synopses dissemination, often routes queries successfully

using the summaries. When a lot of peers disconnect, less synopses are available to help in

query routing, hence a small degradation in the hit ratio.
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3.5 Summary of Results

By comparing the different content-driven routing protocols for a variety of performance

metrics, and also by evaluating their characteristics in comparison to a very different but

common approach (BFS), we were able to quantify our claims regarding the advantages of

adaptive content-driven routing:

1. Counting Bloom filters can provide a very accurate representation of the peers’ content.

Less than 1% of the queries are incorrectly routed due to false positives.

2. Content-driven routing drastically decreases the number of query messages transferred

during a search, allowing very efficient use of the network bandwidth. When adaptively

propagating local and remote content synopses, the savingsin query messages can

reach 97%, compared to a flooding-based mechanism and yet maintain high recall

efficiency.

3. Content-driven routing can answer queries by contactingmore than one order of mag-

nitude less peers than a flooding-based mechanism, allowingefficient use of the nodes’

processing power.

4. Content-driven routing is able to scale to thousands of peers. As the network size

grows, the routing mechanism can still provide query hits, while keeping the number

of query messages and nodes contacted during a search at almost constant levels.

5. Content-driven routing remains accurate and robust evenin highly dynamic environ-
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ments. Content synopses continue to accurately summarize peers’ content and remain

useful for query routing even after a lot of peer disconnections.

6. Adaptive content-driven routing enables us to make much better use of the content

synopses than blind content synopses propagation. Multi-level Bloom filters that are

placed strategically in the network are able to guide queries almost 5 times more often

than simple Bloom filters which are propagated blindly to theimmediate peers only.

7. In the adaptive content synopses propagation strategies, multi-level Bloom filters are

able to guide queries approximately 4 times more often than simple Bloom filters are

and yet keep the total number of content synopses propagation messages 4 times lower

than when using simple Bloom filters.

8. By propagating local and remote Bloom filters adaptively query messages can be de-

creased by half an order of magnitude compared to adaptive propagation of just local

Bloom filters and by one order of magnitude compared to blind propagation of local

Bloom filters to all immediate peers. Thus, adaptive local and remote content syn-

opses propagation offers the best performance of all compared strategies in terms of

scalability, bandwidth usage, processing power usage, andrecall efficiency.
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Chapter 4

Related Work

In this chapter we review related efforts in query routing (Section 4.1) and data dissemination

(Section 4.2) in overlay networks.

4.1 Query Routing

Several mechanisms have been proposed to facilitate searching in peer-to-peer networks [24,

27, 37]. In this Section we discuss the major approaches and their relevance to our content-

driven routing architecture.
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4.1.1 Unstructured Overlays

Breadth-First-Search

The initial version of Gnutella, employed a simple flooding-based query routing protocol

(bounded Breadth-First-Search). Without imposing any structure on the system, peers would

randomly connect to other peers and propagate queries to their neighbors within a certain

radius. Building upon this protocol several efforts have focused on improving the efficiency

and scalability of searching in unstructured overlays.

Super-Peers

QRP (Query Routing Protocol) of RFC-Gnutella 0.6 [18] employs ultra-peers to filter queries

and only forward them to the leaf nodes that are most likely tohave a match. This filtering

is done by looking the query words through a hash table that issent by the leaf node to

its ultrapeer. Similar is the approach followed by FastTrack, a proprietary protocol used by

KaZaA [22] and other file sharing applications: Super-peerswith higher networking, storage,

and processing capabilities volunteer to maintain meta-data for files located in regular peers.

This way queries have to travel only through a network backbone before they reach nodes

that can offer results.

Random Walks

Random walks [25] have been another suggested alternative to query flooding. In this ap-

proach, a peer randomly forwards its query to k of its neighbors. Each of these peers forwards
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the query to one of its neighbors and by repeating this process k random walks through the

network take place. Similarly to that technique, the protocol proposed in [21] allows peers to

propagate queries to k random neighbors. This way the numberof walks increases exponen-

tially. In [5] biased random walks are combined with flow control and topology adaptation

to take into account the heterogeneity of the peers

Query Caching

Efforts on utilizing the previous queries and their replieshave also been made. In [46] the

keywords of the queries are used to compute the similarity ofthe query message to previ-

ously seen queries, to probabilistically forward the queryto only a subset of the nodes. This

technique relies on knowledge collected locally at the peerby monitoring the messages prop-

agated in the network, while in our approach summaries of theactual content of other peers

are disseminated. Caching the results of queries, while arbitrarily partitioning a network in

layers is proposed in [45]. In addition to a local index, thatkeeps indices of local files, each

peer maintains a response index, which caches the query results that flow through the peer.

While this work also aims at reducing search traffic, the approach followed focuses on query

caching and not on content summarization.

Routing Indices

In [8] Routing Indices are proposed as a means to guide queries towards the direction of the

requested object. Each peer maintains statistics which indicate how many objects are reach-
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able through each neighbor (compound routing index). Improving this basic protocol, the

number of hops required to reach an object (hop-count routing index) and the cost of storing

different routing indices (exponentially aggregated routing index) can be taken into account.

In our approach, Bloom filters provide a more precise contentsummarization mechanism

which should enable more efficient query routing.

Depth-First-Search

Censorship resistance has been the focus of the creators of Freenet [6]. Each peer maintains

a routing table of addresses of other peers and of keys of the objects they are storing. Using

these routing tables a bounded Depth-First-Search takes place, combined with caching of the

retrieved objects in intermediate nodes. This way anonymity and redundancy are achieved.

Centralized Indices

Similar to the original Napster [29] peer-to-peer file-sharing application, BitTorrent [2] re-

lies on a centralized database for locating data objects. Unlike Napster though, this central

location (tracker) allows a peer to retrieve pieces of the same data object concurrently from

different peers. To punish free-riding, peers prefer to cooperate with peers they have received

responses from (tit-for-tat).
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4.1.2 Structured Overlays

Structured overlay networks [26, 32, 39, 42, 47] handle location and routing as a single

problem and impose a structure in the system by mapping the objects to particular nodes.

Also referred to as “Distributed Hash Tables (DHTs)”, structured overlays employ different

algorithms to assign object keys to nodes to guarantee key retrieval in logarithmic time.

Chord [42] uses consistent hashing and places the node IDs ina virtual ring. CAN [32]

suggests a multi-dimensional node ID coordinate space and maps keys in this space using

uniform hashing. Tapestry [47] and Pastry [39] employ a Plaxton-style global mesh network

and locate a key in steps, by matching it with the suffix or prefix of the node ID respectively.

Finally Kademlia [26], when trying to match a key to a node ID,utilizes the XOR metric to

calculate the distance in the key space.

Even though structured overlays achieve object retrieval in bounded time, they have tradi-

tionally been inherently limited in other ways [4, 5]: They do not support complex keyword-

based queries without constraints on data placement, they do not take peer heterogeneity into

account, and do not handle robustly network dynamics, like massive peer arrivals, departures,

or failures. Several efforts have been made to address all ofthe above issues [4]. Keyword-

based searching has been made feasible by maintaining inverted indices that map keywords

to objects [34]. In this approach the partitioning is vertical, meaning that each node maintains

pointers to all the objects that contain a specific keyword. Bloom filters are used to reduce

the bandwidth required to answer “AND” queries (which need the cooperation of more peers’

incremental results to be answered), and to cache object lists. To address peer heterogeneity

41



the virtual hosts approach is used, according to which a nodeparticipates in the peer-to-peer

system as several logical hosts, proportional to its request processing capacity.

In our work we focus on unstructured, dynamic, self-organizing networks, in which peers

can decide locally what objects to store and can join the system at random times and leave it

without a priori notification.

Similar to our approach, Rhea and Kubiatowicz [36] propose aprobabilistic location

protocol based on attenuated Bloom filters, which improves the latency of locating files.

Again, the difference from our mechanism is that they place the objects to specific nodes

based on some keys and use these keys to route the requests to the nodes. Furthermore, we

investigate different algorithms for disseminating the content synopses. Aspnes et al [1] have

shown that there is no need for such global coordination in the network. Our approach has the

advantage that it does not impose any structure; we assume that the system is self-organizing,

driven only by decisions made locally at the peers.

4.2 Data Dissemination

Our work builds upon [28] and [31]. In [28] the concept of content summarization was in-

troduced, while in the current work we focus on mechanisms for the dissemination of the

content synopses, we present more elaborate summarizationtechniques and discuss perfor-

mance in highly dynamic environments. One of our criteria for the adaptive selection of

the content synopses recipients is the notion of interests,explained in [31]. In this Section

42



we discuss relevant research efforts on data disseminationin peer-to-peer and large-scale

distributed systems.

4.2.1 Anti-Entropy Protocols

Planet-P [9] locates objects by replicating globally two data structures: A membership di-

rectory and a compact content (term-to-peer) index. Members gossip about changes to keep

these data structures updated and loosely consistent. Gossiping is done by pushing rumors to

random peers and by pulling information from random peers. Acontent ranking algorithm

based on the vector space ranking model is also used, to find only highly relevant documents

to a query. The set of terms in each peer’s local index is summarized using a Bloom filter.

The global index is used to find peers that have a term, and thenthe local index is used to

return the specific documents. The cost of storing and maintaining the global data structures

makes the system unsuitable for users with modem-speed connections, low storage capabil-

ities, or for networks of more than some thousand peers. Our mechanism on the other hand

does not rely on any global knowledge of the network and thus as minimum overhead and no

need for structure.

Rumor spreading algorithms have been proposed, that offer probabilistic guarantees, in-

stead of ensuring strict consistency [44]. For example, P-Grid [11] uses a hybrid push/pull

rumor dissemination algorithm. A new update is pushed by theinitiator to a subset of peers

that are affected by it, because they have the original version of the data item, and is further

propagated by them. Peers that have been disconnected, thathave not received updates for a
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long time, or that have received a pull request but are not sure if they have the latest update,

pull updates from one or more other peers. Two parameters, the probability of forwarding an

update, and the fraction of the total replicas to which peersinitially decide to forward an up-

date, are being considered for spreading the rumors. The protocol utilizes P-Grid’s network

infrastructure to route messages.

4.2.2 Meta-Data Caching

CUP (Controlled Update Propagation) [38] is used for maintaining caches of meta-data for

locating content. A node receives and propagates updates based on personal economic in-

centives. The investment return is secured when a node can answer queries using the stored

meta-data, instead of having to further forward them. Each node decides whether to regis-

ter for receiving and propagating updates for an item according to popularity (based on the

number of queries received for that item)-based incentives, either probabilistic, or log-based,

also taking into account its workload and/or network connectivity. Our Bloom filter-based

approach focuses on large-scale, unstructured networks.

4.2.3 Hierarchical Data

Breadth and Depth Bloom filters have also been used for summarizing hierarchical data struc-

tures [23]. These however focus on specific data structures,such as XML documents and

assume a hierarchical network organization.
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4.2.4 Web-Caching

The Bloom Filter mechanism has also been used in Summary Cache [15] in the context of

web-caching. The authors have shown that Bloom filter representations are economical and

reduce the bandwidth consumption in the network.

4.2.5 Streaming Data

Work has also been done on filtering and disseminating streaming data [41], where data

repositories are organized hierarchically according to their coherency requirements, as well

as on overlay topologies for routing real-time media streams between some publishers and

many subscribers [17]. In [41], in order to provide updates of highly dynamic, streaming,

and aperiodic data, an organization of data repositories isproposed. The repositories are or-

ganized hierarchically, with those that have the highest coherency requirements placed closer

to the data source. Data updates are pushed down that hierarchy, only to the repositories

that require them (according to their coherency requirements). Repositories are placed in a

way that their coherency requirements arejust met, so that repositories with more stringent

coherencies end up serving repositories with more loose coherencies. Back-up parents are

used to handle repository or communication link failures. Active back-up parents deliver data

with less stringent coherency, reducing the overhead of providing resiliency and enabling the

detection of the failure.
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4.2.6 Data Replication

Several efforts have focused on techniques for replicatingdata in peer-to-peer networks.

In [7], different replication strategies are evaluated, and an optimal is found between two

extremes, a uniform and a proportional, which offer the worst performance. In [13] load

balancing in unstructured peer-to-peer networks is achieved by object replication. The Fair-

ness Index of the distribution of the load across the peers isused to drive the load balancing

decisions. The problem we consider differs in that we focus on disseminating pointers to

the data instead of the actual data. Our goal is to enable efficient object retrieval rather than

alleviating data serving hotspots.
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Chapter 5

Conclusions and Future Work

In this work we have presented mechanisms for adaptive data dissemination and content-

driven routing of queries in large-scale, unstructured overlay networks. Based on content

synopses, nodes can forward queries intelligently only to their peers that are highly probable

to provide replies. By propagating the synopses adaptivelywe have shown how they can be

strategically placed in the network, where they are most probably going to be needed. We

have simulated large-scale overlays of thousands of peers and also verified the robustness of

our mechanism under dynamic peer disconnections. We have compared our content-driven

routing mechanism to traditional flooding-based searchingto find out tremendous savings in

query messages. Thus, our approach is scalable and highly efficient in terms of bandwidth

and processing power usage. We have compared three different synopses propagation strate-

gies. Our results show that adaptive propagation of local and remote synopses performs much

better than blind propagation to immediate peers, or just local synopses propagation.
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Our future work includes the comparison of our push-based protocol to the analogous

pull-based, as well as investigating the construction of overlays to efficiently propagate con-

tent synopses. Moreover, taking into account more parameters when deciding where to prop-

agate the content synopses and experimenting with the synopses propagation depth might

also be interesting. Finally, we plan to investigate in detail the behavior of content-driven

routing when built on top of message routing protocols for mobile ad hoc networks [19].
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